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Abstract
We prove that n-step walks and self-avoiding walks on the 2D honeycomb,
2D square, 3D diamond and 3D cubic lattices can be uniquely characterized
(canonized) with no more than n Euclidian distances. We also demonstrate that
these canonical distances can be obtained with O(n) physical measurements.
Finally, while the protein-folding problem on lattices is known to be strongly
NP-hard, we prove that lattice protein structures of size n matching O(n)
canonical distance measurements can be determined in linear time.

PACS numbers: 04.60.Nc, 87.14.Ee, 87.15.Cc

1. Introduction

A protein is a heteropolymeric chain of amino acids that folds into a complex three-dimensional
native structure. The structure of a protein is intrinsically related to its biological function(s).
In the human cell, for example, some 100 000 proteins form the architecture of the cell and
carry out its metabolism. With the amount of genomic information currently being generated,
there is great interest in the development of high-throughput methods for determining the
structures of the encoded protein products.

Experimentally determining the structures of all of these proteins is simply not possible
for the foreseeable future even with advances in x-ray crystallography and NMR spectroscopy.
Many proteins cannot be crystallized and both experimental techniques require 10–100 mg of
pure materials and take months to years to elucidate a structure. Thus, many researchers are
pursuing alternative computational approaches.

Sequence alignment, fold recognition and homology modelling approaches make
predictions based on the similarity between a sequence of unknown structure and the database
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of known protein structures. Although these approaches are quite successful at predicting
and modelling structures when there is sufficient similarity to a known structure, they become
unreliable in the absence of such similarity [1]. Ab initio structure-prediction techniques,
because they aim to predict the structure of a protein from its amino acid sequence alone,
can be used for structure prediction in situations where there are no homologues of known
structure. However, the accuracy of ab initio techniques, with a few notable exceptions,
remains quite low [2].

From the aforementioned observations, it becomes clear that the development of
computational methods to calculate structure from sequence is more important than ever.
Exhaustive search of a protein’s conformational space is clearly not a feasible algorithmic
strategy. The number of possible conformations is exponential in the length of the protein
sequence. Instead, computational models of protein-folding have been formulated to find
the global minimum of a potential energy function. Thus, the protein-folding problem
has been formalized as a global optimization problem. Computational complexity results
and approximate solutions to the protein optimization problem have been derived both
in continuous and discrete spaces. In continuous space, solutions are based on distance
geometry [3], while in discrete space, solutions have been proposed using lattice models [4].
Unfortunately, in both cases, the protein optimization problem3 has been proven to be strongly
NP-hard4,5.

Although protein folding is strongly NP-hard, this fact does not prevent the problem being
solvable in polynomial time when restrictions are applied. In fact, as shown in Crippen and
Havel [3], if all pairwise distances between the amino acids are known and a solution exists,
then protein folding can be solved in polynomial time using distance geometry. The solution
involves the computation of the largest three eigenvalues and eigenvectors of a specific distance
matrix. However, compiling n(n − 1)/2 pairwise distances for a protein of size n requires an
experimental effort that is as costly as to elucidate protein structures directly from NMR or
x-ray crystallography data.

Recently, a rapid experimental protocol for protein structure determination has been
proposed [8]. The technique, called MS3D, is based on cross-linking technology and mass
spectrometry. The protocol requires 3–4 days and less than 100 µg of protein and provides low-
resolution interatomic distance information. While current cross-linking technology limits the
number of distance information to about n/3, experimentalists anticipate that this technology
coupled with combinatorial chemistry techniques will lead in the near future to a number of
distance information close to n. The obvious question is then: Is it at all feasible to elucidate
protein structures using only O(n) distance information?

This paper demonstrates that on the usual 2D and 3D lattices, protein structures can indeed
be retrieved in polynomial time when at most n specific pairwise distances are provided. More
precisely, we represent protein structures by self-avoiding walks on lattices, and prove in
section 2 that for the 2D honeycomb, 2D square, 3D diamond and 3D cubic lattices there
exist sets of distance constraints, named canonical distance lists, for which there is only
one corresponding walk or self-avoiding walk. In section 3 we give algorithms for the 3D
lattices that construct walks and self-avoiding walks from given canonical distance lists. We
also prove our algorithms to run in linear time. Finally, in section 4 we give algorithms
for the 3D lattices that compile canonical distance lists using a linear number of distance
measurements.

3 For global optimization in R, cf [5].
4 For ε approximation in R, cf [6].
5 For NP-hardness results in Z, cf [7].
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2. Unique representation for walk and self-avoiding walk

In the following, L is an infinite lattice embedded in the Euclidean d-dimensional space, R

is the set of reals and Z is the set of integers. Let x be a site of L, ω(x) are the Euclidean
coordinates of site x. We assume that neighbouring sites are equidistant, that is, for all closest
neighbours y of site x we have |ω(x) − ω(y)| = 1 where | | denotes the Euclidean norm.
Examples of lattices verifying the equidistance constraint are honeycomb, square, diamond
and d-dimensional cubic lattices.

Definition 2.1. A n-step walk W on L, beginning at the origin, is a sequence of vertices
ω(0), ω(1), . . . , ω(n) with ω(0) = 0 and |ω(i) − ω(i − 1)| = 1 for 1 � i � n.

Definition 2.2. A n-step self-avoiding walk SAW on L, is a n-step walk on L verifying
ω(i) �= ω(j) for all pairs i �= j in [0, . . . , n].

Definition 2.3. Two n-step walks W1 and W2 on L are said to be isomorphic iff a combination
π of translations, rotations and reflections of L can be found such that π(W1) = W2. The
definition naturally extends to SAWs.

Definition 2.4. A m-distance list D associated with an n-step walk W is a sequence of m
triplets (i, j, dij ) where ω(i) ∈ W , ω(j) ∈ W and dij ∈ R.

Definition 2.5. Given W a n-step walk on L and D an associated m-distance list, W is a
m-constrained, n-step walk on L, iff for all triplets (i, j, dij ) in D, |ω(i) − ω(j)| = dij . The
definition naturally extends to SAWs.

Definition 2.6. A m-distance list D is said to beW -canonical iff there is only one m-constrained
n-step walk on L corresponding to D. The definition naturally extends to SAWs, where D is
then said to be SAW-canonical.

2.1. Lattice coordinates

Prior to seeking a unique representation for walks and self-avoiding walks, it is necessary
to define more precisely the four lattices we are considering. These are 2D honeycomb, 2D
square, 3D diamond and 3D cubic. In order to compute cartesian coordinates on these lattices
we arbitrarily place the origin of our Euclidean space at specific lattice sites as described in
figures 1– 4. For any given lattice site x we then define some subset of the operators L, R,
U, D, F, and B depending on the coordination number of the lattice. These operators return
different neighbours of x. The operators are defined next for each lattice considered.

2.1.1. L = 2D honeycomb lattice. For the honeycomb lattice we define only the functions L,
R and U. The functions are defined indirectly using the Euclidean coordinates of their images.
As can be seen in figure 1, the sites x on a honeycomb lattice fall into two distinct sets, based
on the positions of their neighbours. We define set A as {x|ω(x) · (0, 1) = 3k/2, k ∈ Z} and
set B as {x|x �∈ A}. Using our orientation in figure 1, set A contains the sites that have a
neighbour directly below and set B contains the sites that have a neighbour directly above. We
define the operators separately for the two sets as

• x ∈ A

ω(L(x)) = ω(x) + (−
√

3/2, 1/2) ω(R(x)) = ω(x) + (
√

3/2, 1/2)

ω(U(x)) = ω(x) + (0,−1).
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Figure 1. Arbitrary embedding of 2D honeycomb lattice in Euclidian space.
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Figure 2. Arbitrary embedding of 2D square lattice in Euclidian space.

• x ∈ B

ω(L(x)) = ω(x) + (−
√

3/2,−1/2) ω(R(x)) = ω(x) + (
√

3/2,−1/2)

ω(U(x)) = ω(x) + (0, 1).

2.1.2. L = 2D square lattice. For the square lattice (cf figure 2) we define the functions L,
R, U and D with their associated Euclidean coordinates:

ω(L(x)) = ω(x) + (−1, 0) ω(R(x)) = ω(x) + (1, 0)
ω(U(x)) = ω(x) + (0, 1) ω(D(x)) = ω(x) + (0,−1).

2.1.3. L = 3D diamond lattice. For the diamond lattice we define the functions L, R, U and
D. As one can see in figure 3, the sites on the diamond lattice fall into two distinct sets based
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Figure 3. Arbitrary embedding of 3D diamond lattice in Euclidian space.
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Figure 4. Arbitrary embedding of 3D cubic lattice in Euclidian space.

on their neighbour environment, just like the 2D honeycomb lattice. We define set A to be
{x|ω(x) · (1, 0, 0) = 2k

√
3, k ∈ Z} and B to be {x|x �∈ A}. For the two sets, we define the

operators as:

• x ∈ A

ω(L(x)) = ω(x) + (
√

1/3, 0,−√
2/3) ω(R(x)) = ω(x) + (

√
1/3, 0,

√
2/3)

ω(U(x)) = ω(x) + (−√
1/3,

√
2/3, 0) ω(D(x)) = ω(x) + (−√

1/3,−√
2/3, 0).
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• x ∈ B

ω(L(x)) = ω(x) + (−√
1/3, 0,−√

2/3) ω(R(x)) = ω(x) + (−√
1/3, 0,

√
2/3)

ω(U(x)) = ω(x) + (
√

1/3,
√

2/3, 0) ω(D(x)) = ω(x) + (
√

1/3,−√
2/3, 0).

Note that for all lattice sites x, we have: ω(R(L(x))) = ω(x), ω(L(R(x))) = ω(x),
ω(U(D(x))) = ω(x) and ω(D(U(x))) = ω(x). These relations define operator inverses for
all of the operators and we will take advantage of this during later proofs. We also note that
for a point in set A, all of its neighbours belong to set B and vice versa.

2.1.4. L = 3D cubic lattice. For the cubic lattice (cf figure 4) the functions L, R, U, D, F and
B are:

ω(L(x)) = ω(x) + (−1, 0, 0) ω(R(x)) = ω(x) + (1, 0, 0)
ω(U(x)) = ω(x) + (0, 1, 0) ω(D(x)) = ω(x) + (0,−1, 0)
ω(F (x)) = ω(x) + (0, 0, 1) ω(B(x)) = ω(x) + (0, 0,−1).

2.2. Unicity theorems

The series of theorems that follows defines canonical representations for walks and self-
avoiding walks on honeycomb, square, diamond and cubic lattices.

Theorem 2.7. On the honeycomb lattice the following distance list is W -canonical. D =
d2, d3, . . . , dn, where

di =




(i, i − 2, 0) or
(i, i − ki, 0) or
(i, i − ki,

√
3) or

(i, i − ki, 2) or

(i, i − ki,
√

7) or
∅ otherwise

with
ki = {min k ∈ [3, . . . , n] such that i − k � 0, ω(i − k) �= ω(i − 1) and ω(i − k) �= ω(i − 2)}.

Proof. We prove by induction that there is only one walk W corresponding to D. Let us
first notice that for a zero-step or a one-step walk D = ∅. The theorem is true since on the
honeycomb lattice there is only one non-isomorphic walk having zero or one step.

We now assume the theorem is true up to step i − 1, that is, there is only one walk
corresponding to the list d2, d3, . . . , di−1. We need to prove that given di there is only one
location for step i. If di = (i, i −2, 0) then step i is uniquely located and has the same location
as step i − 2, i.e. ω(i) = ω(i − 2) (cf figure 5(a)). All other distances use step i − ki , which
is the last step on the walk ω(0), ω(1), . . . , ω(i − 1) at a different location from the steps
i − 1 and i − 2. If di = (i, i − ki, 0) then step i is uniquely located and ω(i) = ω(i − ki) (cf
figure 5(b). Without loss of generality, we now assume that the lattice site corresponding to
step i − 1 is an element of A. (The reader can verify that the remainder of the proof holds true
when 2

3 (ω(i − 1) · (0, 1) − 1) ∈ Z.) There are three possible locations for step i − 2, these
are ω(i − 2) = ω(R(i − 1)), ω(i − 2) = ω(L(i − 1)) and ω(i − 2) = ω(U(i − 1)).

We first treat the case ω(i − 2) = ω(R(i − 1)), which is depicted in figure 5.
If di = (i, i − ki,

√
3), then the path between steps i − ki and i is of length 2

(cf figure 5(b)). Since step i − 1 a is neighbour of step i and since step i − 1 is in the path between
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i-1

i-2

U(i-1)

L(i-1) R(i-1)

i-1
i-ki

i-2L(i-1)

U(i-1)

i-1

i-ki

i-2

U(i-1)

L(i-1) R(i-1)

a) b)

c)

Figure 5. Distances in the honeycomb lattice. (a) |ω(R(i−1))−ω(i−2)| = 0. (b) |ω(U(i−1))−
ω(i − ki )| = 0 and |ω(L(i − 1)) − ω(i − ki)| = √

3. (c) |ω(U(i − 1)) − ω(i − ki )| = 2 and
|ω(L(i − 1)) − ω(i − ki)| = √

7.

i − ki and i, we have ω(i − ki) = ω(U(i − 1)) (as in figure 5(b)) or ω(i − ki) = ω(L(i − 1)).
From the definition of ki we cannot have ω(i − ki) = ω(i − 2) = ω(R(i − 1)). It is then
obvious that ω(i) = ω(L(i−1)) if ω(i−ki) = ω(U(i−1)) or ω(i) = ω(U(i−1)) otherwise.
Note that ω(i) �= ω(R(i − 1)) since we have ω(i − 2) = ω(R(i − 1)) and we already have
eliminated the case ω(i) = ω(i − 2) (i.e. di = (i, i − 2, 0)).

If di = (i, i − ki, 2) then according to figure 5(c), we have ω(i) = ω(U(i − 1)) if
ω(i − ki) = ω(R(i − 2)) and ω(i) = ω(L(i − 1)) if ω(i − ki) = ω(U(i − 2)). For
di = (i, i − ki,

√
7), we have ω(i) = ω(L(i − 1)) if ω(i − ki) = ω(R(i − 2)) and

ω(i) = ω(U(i − 1)) if ω(i − ki) = ω(U(i − 2)).
Finally, if di = ∅ none of the other values for di have been found. In particular, ki was not

found such that the location of step i − ki differs from the locations of steps i − 1 and i − 2.
Consequently, the walk W up to step i − 1 occupies only two adjacent lattice sites. Step i can
be located at three different locations ω(U(i − 1)), ω(L(i − 1)) and ω(R(i − 1)). The case
ω(i) = ω(R(i − 1)) is eliminated since ω(i − 2) = ω(L(i − 1)) and di �= (i, i − 2, 0). It is
easy to verify that the two remaining cases lead to isomorphic walks. Consequently, there is
only one non-isomorphic walk corresponding to di = ∅.

We have thus proven that there is only one walk up to step i corresponding to the list of
distances d2, d3, . . . , di in the case ω(i − 2) = ω(R(i − 1)). The reader can verify that a
similar conclusion can be drawn for the two cases ω(i − 2) = ω(L(i − 1)) and ω(i − 2) =
ω(U(i − 1)). �
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Corollary 2.8. On the honeycomb lattice the following distance list is SAW-canonical.
D = d3, d4, . . . , dn, where

di =


(i, i − 3, 2) or
(i, i − 3,

√
7) or

∅ otherwise.

Proof. Let us first notice that for a zero-, one- or two-step walk, D = ∅. The corollary is true
since on the honeycomb lattice there is only one non-isomorphic SAW having zero, one or
two steps. The corollary is then proved by induction using the same technique as for theorem
2.7. Note that di takes only three values here. Because sites cannot overlap with SAW we
necessarily have ki = 3 (cf theorem 2.7 for the definition of ki). Hence, di = −(i, i − 3, 2)
correspond to (i, i − ki, 2) and di = (i, i − 3,

√
7) correspond to (i, i − ki,

√
7). The cases

di = (i, i − 2, 0), di = (i, i − ki, 0) and di = (i, i − ki,
√

3) are not present here because they
all imply non-SAW. �

Theorem 2.9. On the square lattice the following distance list is W -canonical. D =
d2, d3, . . . , dn, where

di =




(i, i − 2, 0) or
(i, i − 2, 2) or
(i, i − ki, h) or

(i, i − ki,
√
h2 + 4) or

∅ otherwise

with
ki = {min k ∈ [3, . . . , n] such that i − k � 0, |ω(i − k + 2) − ω(i − k)| �= 0 and
|ω(i − k + 2) − ω(i − k)| �= 2} and h = |ω(i − 1) − ω(i − ki + 1)|.
Note: ki is the last step on the walk ω(0), ω(1), . . . , ω(i − 1) that does not fall on the straight
line going through ω(i − 2) and ω(i − 1).

Proof. We prove by induction that there is only one walk W corresponding to D. Let us first
notice that for a zero-step or a one-step walk, D = ∅. The theorem is true since on the square
lattice there is only one non-isomorphic walk having zero or one step.

We now assume that the theorem is true up to step i − 1, that is, there is only one walk
corresponding to the list d2, d3, . . . , di−1. We need to prove that given di there is only one
location for step i.

If di = (i, i − 2, 0) then step i is uniquely located and has the same location as the step
i − 2, i.e. ω(i) = ω(i − 2) (cf figure 6(a)).

If di = (i, i − 2, 2) then step i is uniquely located using the following formula. If A is
the operator defined by ω(i − 1) = ω(A(i − 2)) then ω(i) = ω(A(i − 1)).

The two next distances make use of step i−ki. We fully develop the case corresponding to
the orientation (1) of vector [ω(i−2), ω(i−1)]. This case is depicted in figure 6(b). The reader
can verify that all other cases lead to the same conclusion. The four possible locations for step
i are ω(L(i − 1)), ω(R(i − 1)), ω(U(i − 1)) and ω(D(i − 1)). Positions ω(L(i − 1)) and
ω(R(i − 1)) are eliminated since they correspond to the respective di values (i, i − 2, 0)
and (i, i − 2, 2). Recall that i − ki does not fall on the straight line going through ω(i − 2)
and ω(i − 1), therefore, ω(i − ki) = ω(U(i − ki + 1)) or ω(i − ki) = ω(D(i − ki + 1)).

Let A be the operator defined by ω(i − ki + 1) = ω(A(i − ki)). Then, from figure 6(b)
we can see that if di = (i, i − ki, h) then ω(i) = ω(A−1(i − 1). Otherwise, if
di = (i, i − ki,

√
h2 + 4) then ω(i) = ω(A(i − 1)).
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b)a)

i-1i-1

i-2

i-ki

i-ki+2L(i-1) R(i-1)

U(i-1)

D(i-1)

i-ki+1

D(i-1)

U(i-1)

Figure 6. Distances in the square lattice. (a) |ω(D(i − 1)) − ω(i − 2)| = 0 and
|ω(U(i − 1))−ω(i− 2)| = 2. (b) h = |ω(i − 1)−ω(i− ki + 1)|. |ω(D(i − 1))−ω(i− ki)| = h

and |ω(U(i − 1)) − ω(i − ki)| =
√
h2 + 4.

Finally, if di = ∅ none of the other values for di have been found. In particular, ki was not
found such that the location of the step i − ki does not fall on the line going through the steps
i − 1 and i − 2. Consequently, the walk W up to the step i − 1 is limited to a straight line. If
A is defined to be ω(i −1) = ω(A(i −2)) then ω(i) �= ω(A(i −1)) or ω(i) �= ω(A−1(i −1))
since those values are covered by the cases di = (i, i − 2, 2) and (i, i − 2, 0), respectively.
The other two directions (both perpendicular to the existing walk) lead to isomorphic walks
which represent the one allowed walk corresponding to di = ∅.

We have thus proved that there is only one walk up to step i corresponding to the list of
distances d2, d3, . . . , di in case (1) (i.e. ω(i − 1) − ω(i − 2) = (1, 0)). The same conclusion
can be drawn for the cases (2), (3) and (4). �

Corollary 2.10. On the square lattice the following distance list is SAW-canonical. D =
d2, d3, . . . , dn, where

di =




(i, i − 2, 2) or
(i, i − ki, ki − 2) or(
i, i − ki,

√
k2
i − 4ki + 8

)
or

∅ otherwise

with
ki = {min k ∈ [3, . . . , n] such that i − k � 0, |ω(i − k + 2) − ω(i − k)| �= 0 and
|ω(i − k + 2) − ω(i − k)| �= 2}.

Proof. The corollary is proved using the same technique as for theorem 2.9 and using the fact
that for SAW we have h = ki − 2. Also, note that di �= (i, i − 2, 0) since overlaps are not
allowed with SAW. �
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Theorem 2.11. On the diamond lattice the following distance list is W -canonical. D =
d2, d3, . . . , dn, where

di =




(i, i − 2, 0) or
(i, i − 3,

√
19/3) or

(i, i − ki, h) or

(i, i − ki,
√
h2 + 8/3) or

(i, i − ki,
√
h2 + 16/3) or

∅ otherwise
with

ki = {min k ∈ [4, . . . , n] such that i − k � 0, |ω(i − ki + 2) − ω(i − ki)| �= 0 and
|ω(i − ki + 3) − ω(i − ki)| �= √

19/3} andh = |ω(i − ki + 1) − ω(i − 1)|.
Note: ki is the last step on the walk ω(0), ω(1), . . . , ω(i − 1) that does not fall onto the plane
going through ω(i − ki + 1), ω(i − ki + 2), . . . , ω(i − 1).

Proof. We prove by induction that there is only one walk W corresponding to D. Let us
first notice that for a zero-step or a one-step walk, D = ∅. The theorem is true since on the
diamond lattice there is only one non-isomorphic walk having zero or one step.

We now assume that the theorem is true up to step i − 1, that is, there is only one walk
corresponding to the list d2, d3, . . . , di−1. We need to prove that given di there is only one
location for step i. If di = (i, i − 2, 0) then step i is uniquely located and ω(i) = ω(i − 2).
If di = (i, i − 3,

√
19/3) then step i is uniquely located. To find the location of ω (i), we first

define the operator A as ω(i − 2) = ω(A(i − 3)) and then as ω(i) = ω(A(i − 1)). Physically,
this is fairly clear since it just means that to travel a distance

√
19/3 (the maximum distance

one can travel on the unit diamond lattice in three steps), one must go in the same direction as
the first step.

All other distances use step i − ki, which is the last step on the walk ω(0), ω(1), . . . , ω(i−
1) that does not fall onto the plane going through ω(i − ki + 1), ω(i − ki + 2), . . . , ω(i − 1).
We divide the proof into two cases. First, for ki even and then for ki odd. For both cases, we
define the operator A as ω(i − ki + 1) = ω(A(i − ki)).

An example case for ki even is shown in figure 7(b). All of the points shown lie in a plane,
except for i and i − ki. If both points are above or below the plane, then they lie a distance
h apart, while if they lie on opposite sides of the plane, they are a distance

√
h2 + 8/3 apart.

From the diagram, one can see that if di = (i, i − ki, h) then ω(i) = ω(A−1(i)), while if
di = (i, i − ki,

√
h2 + 8/3) then ω(i) = ω(A(i)).

A typical case for ki odd is outlined in figure 7(c). We have the same situation as in ki

even in which all of the points lie in the plane except for i and i − ki. If both points are above
or below the plane then they lie a distance

√
h2 + 8/3, while if they are on opposite sides of

the plane then they are a distance
√
h2 + 16/3 apart. In this case, if di = (i, i − ki,

√
h2 + 8/3)

then ω(i) = ω(A−1(i)), while if di = (i, i − ki,
√
h2 + 16/3) then ω(i) = ω(A(i)).

Finally, if di = ∅ none of the other values for di have been found. In particular,
ki was not found such that step i − ki does not fall on the plane going through
ω(i − ki + 1), ω(i − ki + 2), . . . , ω(i − 1). This implies that all of the steps up to i − 1
are in a plane. However, the two cases corresponding to i lying in the same plane have
already been considered by the cases di = (i, i − 2, 0) and di = (i, i − 3,

√
19/3). If

ω(i − 2) = ω(A(i − 3)) then the two cases already considered correspond to the cases
ω(i) = ω(A−1(i − 1)) and ω(i) = ω(A(i − 1)), respectively. There are technically two
different cases left, but they are isomorphic. They both correspond to the walk leaving the
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Figure 7. Distances in the diamond lattice. (a) |ω(D(i − 1))−ω(i − 2)| = 0 and |ω(U(i − 1))−
ω(i−3)| = √

19/3. (b) h = |ω(i−1)−ω(i−ki +1)|. |ω(L(i−1))−ω(i−ki)| = h if ω(i−ki) =
ω(L(i−ki)) and |ω(L(i−1))−ω(i−ki )| =

√
h2 + 8/3 otherwise. |ω(R(i−1))−ω(i−ki)| = h

if ω(i − ki ) = ω(R(i − ki )) and |ω(R(i − 1)) − ω(i − ki)| =
√
h2 + 8/3 otherwise.

(c) h = |ω(i−1)−ω(i−ki+1)|. |ω(L(i−1))−ω(i−ki)| =
√
h2 + 8/3 if ω(i−ki) = ω(L(i−ki))

and |ω(L(i − 1))−ω(i − ki)| =
√
h2 + 16/3 otherwise. |ω(R(i − 1))−ω(i − ki )| =

√
h2 + 8/3

if ω(i − ki) = ω(R(i − ki)) and |ω(R(i − 1)) − ω(i − ki)| =
√
h2 + 16/3 otherwise.

plane in either the up or the down direction relative to the plane. Since they are isomorphic,
we have uniquely located point i up to isomorphisms. It is simply located at one of the two
directions from i − 1 not corresponding to either A(i − 1) or A−1(i − 1).

We have thus proved that there is only one walk up to step i corresponding to the list of
distances d2, d3, . . . , di . �

Corollary 2.12. On the diamond lattice the following distance list is SAW-canonical. D =
d3, d4, . . . , dn, where

di =




(i, i − 3,
√

19/3) or
(i, i − ki, ki − 2) or(
i, i − ki,

√
k2
i − 4ki + 8/3

)
or(

i, i − ki,

√
k2
i − 4ki + 16/3

)
or

∅ otherwise

with

ki = {min k ∈ [4, . . . , n] such that i − k � 0, |ω(i − ki + 3) − ω(i − ki)| �=
√

19/3}.

Proof. Let us first notice that for a zero-, one- or two-step walk, D = ∅. The corollary is true
since on the diamond lattice there is only one non-isomorphic SAW having zero, one, or two
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steps. The corollary is then proved by induction using the same technique as for theorem 2.11.
Note that with SAW we have h = ki − 2 and di �= (i, i − 2, 0). �

Theorem 2.13. On the cubic lattice the following distance list is W -canonical. D =
d2, d3, . . . , dn, where

di =




(i, i − 2, 0) or
(i, i − 2, 2) or
(i, i − ki, h0) or(
i, i − ki,

√
h2

0 + 4

)
or(

i, i − lki ,

√
h2

1 + h2
2

)
or(

i, i − lki ,

√
h2

1 + h2
2 + 4

)
or

∅ otherwise

with

h0 = |ω(i − 1) − ω(i − ki + 1)|
h1 = (ω(i − 1) − ω(i − lki + 1)) · (ω(i − 1) − ω(i − 2))

h2 = (ω(i − ki + 1) − ω(i − lki + 1)) · (ω((i − ki + 1) − ω((i − ki))

ki = {min k ∈ [3, . . . , n] such that i − k � 0, |ω(i − k + 2) − ω(i − k)| �= 0 and

|ω(i − k + 2) − ω(i − k)| �= 2} and

lki = {min l ∈ [3, . . . , n] such that i − l � 0, ki − l � 0 and ((ω(i − ki + 2) − ω(i − ki + 1))

×(ω(i − ki) − ω(i − ki + 1))) · (ω(i − l + 1) − ω(i − l)) = ±1}.
Note: ki is the last step on the walk ω(0), ω(1), . . . , ω(i − 1) that does not fall on the straight
line going throughω(i−2) andω(i−1). lki is the last step on the walk ω(0), ω(1), . . . , ω(i−1)
that does not fall on the plane going through ω(i − ki + 2), ω(i − ki + 1) and ω(i − ki).

Proof. We prove by induction that there is only one walk W corresponding to D. Let us first
notice that for a zero-step or a one-step walk, D = ∅. The theorem is true since on the cubic
lattice there is only one non-isomorphic walk having zero or one step.

We now assume that the theorem is true up to step i − 1, that is, there is only one walk
corresponding to the list d2, d3, . . . , di−1. We need to prove that given di there is only one
location for step i.

If di = (i, i − 2, 0) then step i is uniquely located and has the same location as the step
i − 2, i.e. ω(i) = ω(i − 2) (cf figure 8(a)).

If di = (i, i − 2, 2) then step i is uniquely located and its position is given by
ω(i) = ω(A(i − 1)), where ω(i − 1) = ω(A(i − 2)).

The next two distances make use of step i − ki . We fully develop the case corresponding
to an orientation such that ω(i − 1) = ω(U(i − 2)), just for the sake of clarity. This case
is also depicted in figure 8(b). The reader can verify that all other cases lead to the same
conclusion. The six possible locations for step i are ω(U(i − 1)), ω(D(i − 1)), ω(F (i − 1)),
ω(B(i − 1)), ω(L(i − 1)) andω(R(i − 1)). Positions ω(D(i − 1)) and ω(U(i − 1)) are
eliminated since they correspond to the respective di values (i, i − 2, 0) and (i, i − 2, 2). Recall
that i − ki does not fall on the straight line going through ω(i − 2) and ω(i − 1), therefore,
there are four locations for i − ki . If we define ω(i − ki + 1) = ω(A(i − ki)) then we have A
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Figure 8. Distances in the cubic lattice. (a) |ω(D(i − 1)) − ω(i − 2)| = 0 and |ω(U(i − 1)) −
ω(i − 2)| = 2. (b) h0 = |ω(i − 1) − ω(i − ki + 1)|. |ω(F(i − 1)) − ω(i − ki)| = h0 and

|ω(B(i − 1)) − ω(i − ki)| =
√
h2

0 + 4. (c) h1 = (ω(i − 1) − ω(i − li )) · (ω(i − 1) − ω(i − 2)),
h2 = (ω(i − ki + 1) − ω(i − li )) · (ω((i − ki + 1) − ω((i − ki )), |ω(L(i − 1)) − ω(i − li )| =√
h2

1 + h2
2 and |ω(R(i − 1)) − ω(i − li )| =

√
h2

1 + h2
2 + 4.

as either F, B, L or R. For any of these four possibilities, we know ω(i) = ω(A−1(i − 1)) if
di = (

i, i − ki, h0
)

and ω(i) = ω(A(i − 1)) if di = (
i, i − ki,

√[
h2

0 + 4
])

.
In all the above cases two positions remain unknown. For this instance, we consider the

case where ω(i − ki + 1) = ω(F(i − ki)) cannot uniquely locate site i if it is at L(i − 1) or
R(i−1). These positions are given by the distances

(
i, i−lki ,

√[
h2

1+h2
2

])
and

(
i, i−lki ,

√[
h2

1+
h2

2 +4
])

. These last two distances introduce step i− lki . Recall that i− lki does not fall onto the
plane going through ω(i −ki +2), ω(i −ki +1) and ω(i−ki). Hence, for the direction defined
by ω(i− lki +1) = ω(A(i− lki)) the only two possibilities for A are L and R. From figure 8(c),
we can see that for di = (

i, i − lki ,
√[

h2
1 + h2

2

])
, ω(i) = ω(A−1(i − 1)). Otherwise, if

di = (
i, i − lki ,

√[
h2

1 + h2
2 + 4

])
then we have ω(i) = ω(A(i − 1)).

Finally, in the case di = ∅, step i can be located at six different positions ω(D(i −
1)), ω(U(i − 1)), ω(F (i − 1)), ω(B(i − 1)), ω(L(i − 1)) andω(R(i − 1)). The first two
positions are eliminated because they correspond to the respective di values (i, i − 2, 0) and
(i, i−2, 2). Note that if di = ∅ none of the other values for di have been found. In particular, ki

was not found corresponding to the distances di = (i, i−ki, h0) and di = (
i, i−ki,

√[
h2

0 +4
])

.
Such a situation may arise when the walk W up to step i − 1 is limited to the straight line going
through steps i − 1 and i − 2, or when the walk W up to step i − 1 is in the plane defined by
steps i − ki + 2, i − ki + 1 and i − ki . The former case is easy to identify, if the walk is limited
to a straight line then all distances up to step i − 1 have the values (i, i − 2, 0) or (i, i − 2, 2).
In such an instance, all four possible locations ω(F(i − 1)), ω(B(i − 1)), ω(L(i − 1))
and ω(R(i − 1)) lead to walks that are isomorphic. The latter case is identified when
there is at least one distance up to step i − 1 taking the value (i, i − ki, h0) or(
i, i − ki,

√[
h2

0 + 4
])

. In this case too, the two possible locations for step i lead to isomorphic
walks.

We have thus proved that there is only one walk up to step i corresponding to the list of
distances d2, d3, . . . , di in case (1.1), i.e. ω(i − 1)−ω(i − 2) = (1, 0). The same conclusion
can be drawn for the cases (2.1)–(2.4), (3.1)–(3.4) and (4.1)–(4.4). �
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Corollary 2.14. On the cubic lattice the following distance list is SAW-canonical. D =
d2, d3, . . . , dn, where

di =




(i, i − 2, 2) or
(i, i − ki, ki − 2) or(
i, i − ki,

√
k2
i − 4ki + 8

)
or(

i, i − li ,

√
h2

1 + h2
2

)
or(

i, i − li ,

√
h2

1 + h2
2 + 4

)
or

∅ otherwise

with

h1 = (ω(i − 1) − ω(i − lki + 1)) · (ω(i − 1) − ω(i − 2))

h2 = (ω(i − ki + 1) − ω(i − lki + 1)) · (ω((i − ki + 1)(−ω(i − ki))

ki = {min k ∈ [3, . . . , n] such that i − k � 0, |ω(i − k + 2) − ω(i − k)| �= 0 and

|ω(i − k + 2) − ω(i − k)| �= 2} and

lki = {min l ∈ [3, . . . , n] such that i − l � 0, ki − l � 0 and ((ω(i − ki + 2) − ω(i − ki + 1))

×(ω(i − ki) − ω(i − ki + 1))) · (ω(i − l + 1) − ω(i − l)) = ±1}.

Proof. The corollary is proved using the same technique as for theorem 2.13 and using the
fact that for SAW we have h0 = ki − 2. Also note that for SAW, di �= (i, i − 2, 0). �

3. Construction of walks from canonical distance lists

Keeping our biological application in mind, we give in this section an algorithm that constructs
walks on diamond and cubic lattices from W/SAW-canonical distance lists. Note that proteins
are 3D self-avoiding structures and the diamond lattice is better suited for proteins than the
cubic lattice since it pictures the tetravalent character of carbon with the appropriate bond
angles and the appropriate trans conformation of hydrocarbon chains. The algorithms are
given next, similar algorithms can be derived for the 2D lattices of the previous section.

BUILD-WALK-DIAMOND(D, W )
input: −D: n-distance list
output: −W : n-step walk
local: −i, ki: integer
begin
1. ω(0) = (0, 0, 0);ω(1) = ω(U(0));
2. for i = 2 to n do ω(i) = COMPUTE-COORD-DIAMOND (W , D, i);
3. done
end

COMPUTE-COORD-DIAMOND (W , D, i)
input: −D: n-distance list

−i: integer
output: −W : n-step walk
local: −di: ith element in list D
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−ki: integer
−h: real
−A: direction operator
−o(di), e(di), and r(di): functions returning the first and second
elements of triplet di

begin
1. if di = /0 then
2. let A be the operator such that ω(i − 1) = ω(A (i − 2))
3. return any neighbour of ω(i − 1) other than ω(A(i − 1)) or

ω(A−1(i − 1))
4. else
5. ki = o(di) − e(di); h = |ω(i − 1) − ω(i − ki + 1)|
6. let A be the operator such that ω(i − ki + 1) = ω(A(i − ki))

7. if r(di) = h then ω(i) = ω(A−1(i − 1))
8. else if r(di) = √

[h2 + 16/3] then ω(i) = ω(A(i − 1))
9. else if ki even then ω(i) = ω(A(i − 1))
10. else ω(i) = ω(A−1(i − 1))
11. endif;
end

BUILD-WALK-CUBIC(D, W )
input: −D: n-distance list
output: −W : n-step walk
local: −i, ki : integer
begin
1. ω(0) = (0,0,0); ω(1) = ω(U(0));
2. for i = 2 to n do ω(i) = COMPUTE-COORD-CUBIC (W , D, i);
3. done
end

COMPUTE-COORD-CUBIC (W , D, i)
input: −D: n-distance list

−i: integer
output: −W : n-step walk
local: −di: ith elements of list D

−ki: integer
−h: real
−A: direction operator
−o(di), e(di), and r(di): functions returning the first and second
elements of triplet di

begin
1. if di = (i, i − 2, 0) then ω(i) = ω(i − 2)
2. else if di = (i, i − 2, 2) then
3. let A be defined by ω(i − 1) = ω(A(i − 2))
4. ω(i) = ω(A(i − 1))
5. else
6. let ki be the first point not on a line between ω(i −1) and ω(i − 2)
7. let h0 = |ω(i − 1) − ω(i − ki + 1)|
8. let A be defined by ω(i − ki + 1) = ω(A(i − ki))
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9. if di = (i, i − ki, h0) then ω(i) = ω(A−1(i − 1))
10. else if di = (

i, i − ki,
√ [

h2
0 + 4

])
then ω(i) = ω(A(i − 1))

11. else
12. let lki be the first point not on a plane formed by
13. ω(i − ki + 2), ω(i − ki + 1), and ω(i − ki)

14. let h1 = (ω(i − 1) − ω(i − lki + 1)) · (ω(i − 1) − ω(i − 2))
15. let h2 = (ω(i − ki + 1) − ω(i − lki + 1)) · (ω((i − ki + 1) − ω((i − ki))

16. let A be defined by ω(i − lki + 1) = ω(A(i − lki))

17. if di = (
i, i − lki ,

√[
h2

1 + h2
2

])
then ω(i) = ω(A−1(i − 1))

18. else if di = (
i, i − lki ,

√[
h2

1 + h2
2 + 4

])
then ω(i) = ω(A(i − 1))

19. endif
20. endif
end

The scaling of the above algorithms is given by the two following theorems.

Theorem 3.1. Given D a W/SAW-canonical distance list the following is true.

(i) The algorithm BUILD-WALK-DIAMOND(D,W ) constructs a |D|-constrained n-step walk
W on the diamond lattice corresponding to the distance list D.

(ii) BUILD-WALK-DIAMOND runs in O(n) steps.

(iii) All walks on the diamond lattice corresponding to D are isomorphic to the walk generated
by BUILD-WALK-DIAMOND.

(iv) If D is SAW-canonical then the walk produced by BUILD-WALK-DIAMOND is a SAW.

Proof

(i) W is a walk since for all i we have |ω(i)−ω(i−1)| = 1. It is obvious that W is composed
of n steps and is subjected to |D| distance constraints. W matches the distance list D since
the if statements are derived from the proof of theorem 2.11.

(ii) The loop starting at line 2 comprises n − 2 steps.

(iii) W is constructed from D, which is W -canonical, consequently all walks matching D are
isomorphic to W .

(iv) If D is SAW-canonical then D was generated from a SAW W ′. Since D is canonical W is
isomorphic to W ′ and W is a SAW. �

Theorem 3.2. Given D a W/SAW-canonical distance list the following is true.

(i) The algorithm BUILD-WALK-CUBIC(D,W ) constructs a (n−2)-constrained n-step walk
W on the cubic lattice corresponding to the distance list D.

(ii) BUILD-WALK-CUBIC runs in O(n) steps.

(iii) All walks on the diamond lattice corresponding to D are isomorphic to the walk generated
by BUILD-WALK-CUBIC.

(iv) If D is SAW-canonical then the walk produced by BUILD-WALK-CUBIC is a SAW.

Proof. The proof follows in exactly the same way as the previous proof using instead theorem
2.13. �
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4. Compiling canonical distance lists with a minimum number of experiments

In this section we are interested to compute canonical distance lists for protein structures.
Since proteins are 3D objects, we will restrict ourself to SAW on the diamond and cubic
lattices. The Euclidean coordinates of the probed SAW are unknown but we assume that the
walk exists and that we have an experimental apparatus that can measure the distance between
any pair of steps on the walk. In other words, our protein structure is unresolved but we have
an experimental technique that can measure the distance between any pair of amino acids in
the protein sequence. Techniques such as NMR and MS3D can provide such information.
The algorithms given next compute the canonical distance list of a SAW with O(n) distance
measurements.

COMPILE-DISTANCE-DIAMOND (W,D)

input: −W : n-step walk (Euclidean coordinates unknown)
output: −D: n-distance list

−W : n-step walk (Euclidean coordinates computed)
local: −i, ki: integer

−MEASURE(W, i, j): function returning the Euclidean
distance between sites i and j of W

begin
1. D = φ; ω(0) = (0, 0, 0); ω(1) = ω(U(0));
2. for i = 3 to n do
3. δ = MEASURE (W , i, i − 3);
4. if δ = √

19/3 then D = D ∪ (i, i − 3, δ);
5. else ki = 0;
6. find ki > 3 s.t. i − ki � 0 and (i − ki + 3, i − ki,

√
19/3) /∈ D;

7. if ki = 0 then goto 11 endif;
8. δ = MEASURE (W, i, i − ki);
9. D = D ∪ (i, i − ki, δ);
10. endif
11. ω(i) = COMPUTE-COORD-DIAMOND (D, W , i);
12. done
end

COMPILE-DISTANCE-CUBIC (W , D)
input: −W : n-step walk (Euclidean coordinates unknown)
output: −D: n-distance list

−W : n-step walk (Euclidean coordinates computed)
local: −i, ki, lki : integer

−MEASURE(W, i, j): function returning the Euclidean
distance between sites i and j of W

begin
1. D = φ;ω(0) = (0, 0, 0);ω(1) = ω(U(0));
2. for i = 2 to n do
3. δ = MEASURE (W, i, i − 2);
4. if δ = 2 thenD = D ∪ (i, i − 2, δ);
5. else ki = 0;
6. find ki > 2 s.t. i − ki � 0 and (i − ki + 2, i − ki, 2) /∈ D;
7. if ki = 0 then goto 18 endif;
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8. δ = MEASURE (W, i, i − ki);
9. if δ = ki − 2 or δ = √

[k2
i − 4ki + 8] then

10. D = D ∪ (i, i − ki, δ);
11. else lki = 0;
12. find lki > 2 s.t. i − lki � 0 and ki − lki � 0 and

((ω(i − ki + 2) − ω(i − ki + 1)) × (ω(i − ki) − ω(i − ki + 1)))
· (ω(i − lki + 1) − ω(i − lki )) = ±1.

13. if lki = 0 then goto 18 endif;
14. δ = MEASURE (W, i, i − lki );
15. D = D ∪ (i, i − lki , δ);
16. endif
17. endif
18. ω(i) = COMPUTE-COORD-CUBIC (D, W , i);
19. done
end

Theorem 4.1. Given W a SAW on the diamond lattice, the following is true.

(i) The algorithm COMPILE-DISTANCE-DIAMOND(W,D) computes a SAW-canonical
distance list for W .

(ii) The procedure MEASURE is called at most O(n) times.

Proof

(i) The proof is obvious from corollary 2.12.
(ii) At most two measurements are carried for every i, 3 � i � n. �

Theorem 4.2. Given W a SAW on the cubic lattice, the following is true.

(i) The algorithm COMPILE-DISTANCE-CUBIC (W,D) computes a SAW-canonical
distance list for W .

(ii) The procedure MEASURE is called at most O(n) times.

Proof

(i) The proof is obvious from corollary 2.14.
(ii) At most three measurements are carried for every i, 2 � i � n. �

5. Extension to real space protein-folding simulations

The lattice model of the protein gives us a straightforward means of producing structures
conforming to a set of given constraints using established techniques of understood complexity.
Unfortunately, the actual protein structure exists in real space, with features that may not be
adaptable to a lattice treatment. However, the same general SAW generation technique may
be applicable to real space protein generation.

The idea behind SAW generation of these real space structures is that there are limitations
on the different ways that individual amino acids can connect to form chains. The physically
reasonable conformational space available for adding an amino acid to an existing chain can be
analysed and then broken up into discrete branching possibilities much like that of the lattice-
based SAW. In this case, one does not have a fixed lattice but instead, the possible positions
of the next amino acid. These positions depend on the most probable conformations, which
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in turn are determined by the local environment. Because of the limited number of amino
acids, a conformational library for each of the 20 amino acids can be precomputed de novo
using classical molecular dynamics and Monte Carlo techniques, or statistically, from the set
of solved protein structures [1]. Once the size of the conformational space for each amino
acid is known, a decision can be made regarding which (and how many) conformations will be
attempted for the next step in the SAW. Generally, there is enough global and local constraint
information such that one can explore the conformational space with a reasonably small
number of possibilities. Although the lattice complexity results are not rigorously extendible
to real space, many of the constraint results do apply and we do not expect the computational
complexity results to be dramatically different.

There are additional issues to consider in the real space protein-folding problem. The
primary one is how many constraints are generally needed to uniquely define the walk. More
generally, one could ask how many constraints are needed to have a small number of walks
or perhaps O(n) walks, where n is the number of amino acids. A related question is what size
constraints are generally the most effective. Is it better to have lots of constraints for amino
acids that are close to each other in space or far or perhaps a mix? One can also ask the same
things about how close the constrained amino acids should be to one another in the amino
acid sequence. Finally, one must consider the effect of the uncertainty which will always be
present in experimentally derived constraints.

6. Conclusion

We have demonstrated that given a lattice model of a protein containing n sites (analogous
to amino acids), the complete structure of the protein can be determined given O(n) distance
constraints for the most commonly used lattices in two and three dimensions. Furthermore,
we have shown that reconstruction can be accomplished in linear time and the canonical
distance list can be compiled with a linear number of distance measurements. Future work
will be directed at exploring similar questions in real space.
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